Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Infect Dis ; 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-2241627

ABSTRACT

The aim of this randomized, controlled trial is to determine whether anti-SARS-CoV-2 hyperimmune globulin protects against severe COVID-19 in severely immunocompromised, hospitalized, COVID-19 patients. Patients were randomly assigned to receive anti-SARS-CoV-2 hyperimmune globulin (COVIG) or intravenous immunoglobulin without SARS-CoV-2 antibodies. Severe COVID-19 was observed in two out of ten (20%) patients treated with COVIG compared to seven out of eight (88%) in the IVIG control group (p = 0.015, Fisher's exact test). COVIG may be a valuable treatment in severely immunocompromised, hospitalized, COVID-19 patients and should be considered when no monoclonal antibody therapies are available. The trial was registered at www.trialregister.nl (#NL9436).

2.
Visentin, Andrea, Scarfò, Lydia, Chatzikonstantinou, Thomas, Kapetanakis, Anargyros, Demosthenous, Christos, Karakatsoulis, Georgios, Andres, Martin, Antic, Darko, Allsup, David, Baile, Mónica, Bron, Dominique, Capasso, Antonella, Catherwood, Mark, Collado, Rosa, Cordoba, Raul, Cuéllar-García, Carolina, Delgado, Julio, Dimou, Maria, Doubek, Michael, De Paoli, Lorenzo, De Paolis, Maria Rosaria, Del Poeta, Giovanni, Efstathopoulou, Maria, Shimaa, El-Ashwah, Enrico, Alicia, Farina, Lucia, Ferrari, Angela, Foglietta, Myriam, Furstenau, Moritz, Garcia-Marco, Jose A.; Gentile, Massimo, Gimeno, Eva, Maria, Gomes da Silva, Gutwein, Odit, Hakobyan, Yervand, Herishanu, Yair, Hernandez, jose Angel, Herold, Tobias, Iyengar, Sunil, Itchaki, Gilad, Jaksic, Ozren, Janssens, Ann, Kalashnikova, Olga, Kalicinska, Elzbieta, Kater, Arnon P.; Kersting, Sabina, Labrador, Jorge, Lad, Deepesh, Laurenti, Luca, Levin, Mark-David, Lista, Enrico, Malerba, Lara, Marasca, Roberto, Marchetti, Monia, Marquet Palomanes, Juan, Mattsson, Mattias, Mauro, Francesca Romana, Mayor-Bastida, Carlota, Morawska, Marta, Motta, Marina, Munir, Talha, Murru, Roberta, Milosevic, Ivana, Miras Calvo, Fatima, Niemann, Carsten Utoft, Olivieri, Jacopo, Orsucci, Lorella, Papaioannou, Maria, Pavlovsky, Miguel Arturo, Piskunova, Inga S.; Pocali, Barbara, Popov, Viola Maria, Quaglia, Francesca Maria, Quaresmini, Giulia, Raa, Doreen te, Reda, Gianluigi, Rigolin, Gian Matteo, Ruchlemer, Rosa, Shrestha, Amit, Šimkovič, Martin, Špaček, Martin, Sportoletti, Paolo, Stanca Ciocan, Oana, Tadmor, Tamar, Vandenberghe, Elisabeth, Varettoni, Marzia, Vitale, Candida, Van Der Spek, Ellen, Van Gelder, Michel, Wasik-Szczepanek, Ewa, Yáñez, Lucrecia, Yassin, Mohamed A.; Coscia, Marta, Eichhorst, Barbara, Rambaldi, Alessandro, Stavroyianni, Niki, Trentin, Livio, Stamatopoulos, Kostas, Ghia, Paolo.
Blood ; 140:2333-2337, 2022.
Article in English | ScienceDirect | ID: covidwho-2120438
5.
Antic, Darko, Milic, Natasa, Chatzikonstantinou, Thomas, Scarfò, Lydia, Otasevic, Vladimir, Rajovic, Nina, Allsup, David, Cabrero, Alejandro Alonso, Andres, Martin, Baile Gonzales, Monica, Capasso, Antonella, Collado, Rosa, Cordoba, Raul, Cuéllar-García, Carolina, Correa, Juan Gonzalo, De Paoli, Lorenzo, De Paolis, Maria Rosaria, Del Poeta, Giovanni, Dimou, Maria, Doubek, Michael, Efstathopoulou, Maria, El-Ashwah, Shaimaa, Enrico, Alicia, Espinet, Blanca, Farina, Lucia, Ferrari, Angela, Foglietta, Myriam, Lopez-Garcia, Alberto, Garcia-Marco, Jose A.; García-Serra, Rocío, Gentile, Massimo, Gimeno, Eva, Gomes da Silva, Maria, Gutwein, Odit, Hakobyan, Yervand, Herishanu, Yair, Hernández-Rivas, José Ángel, Herold, Tobias, Itchaki, Gilad, Jaksic, Ozren, Janssens, Ann, Kalashnikova, Оlga B.; Kalicińska, Elżbieta, Kater, Arnon P.; Kersting, Sabina, Koren-Michowitz, Maya, Gomez, Jorge Labrador, Lad, Deepesh, Laurenti, Luca, Fresa, Alberto, Levin, Mark-David, Mayor Bastida, Carlota, Malerba, Lara, Marasca, Roberto, Marchetti, Monia, Marquet, Juan, Mihaljevic, Biljana, Milosevic, Ivana, Mirás, Fatima, Morawska, Marta, Motta, Marina, Munir, Talha, Murru, Roberta, Nunes, Raquel, Olivieri, Jacopo, Pavlovsky, Miguel Arturo, Piskunova, Inga S.; Popov, Viola Maria, Quaglia, Francesca Maria, Quaresmini, Giulia, Reda, Gianluigi, Rigolin, Gian Matteo, Shrestha, Amit, Šimkovič, Martin, Smirnova, Svetlana, Špaček, Martin, Sportoletti, Paolo, Stanca, Oana, Stavroyianni, Niki, Te Raa, Doreen, Tomic, Kristina, Tonino, Sanne, Trentin, Livio, Van Der Spek, Ellen, van Gelder, Michel, Varettoni, Marzia, Visentin, Andrea, Vitale, Candida, Vukovic, Vojin, Wasik-Szczepanek, Ewa, Wróbel, Tomasz, Yanez San Segundo, Lucrecia, Yassin, Mohamed A.; Coscia, Marta, Rambaldi, Alessandro, Montserrat, Emili, Foà, Robin, Cuneo, Antonio, Carrier, Marc, Ghia, Paolo, Stamatopoulos, Kostas.
Blood ; 140:2772-2775, 2022.
Article in English | ScienceDirect | ID: covidwho-2119921
6.
J Hematol Oncol ; 15(1): 116, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-2021317

ABSTRACT

BACKGROUND: Patients with chronic lymphocytic leukemia (CLL) may be more susceptible to COVID-19 related poor outcomes, including thrombosis and death, due to the advanced age, the presence of comorbidities, and the disease and treatment-related immune deficiency. The aim of this study was to assess the risk of thrombosis and bleeding in patients with CLL affected by severe COVID-19. METHODS: This is a retrospective multicenter study conducted by ERIC, the European Research Initiative on CLL, including patients from 79 centers across 22 countries. Data collection was conducted between April and May 2021. The COVID-19 diagnosis was confirmed by the real-time polymerase chain reaction (RT-PCR) assay for SARS-CoV-2 on nasal or pharyngeal swabs. Severe cases of COVID-19 were defined by hospitalization and the need of oxygen or admission into ICU. Development and type of thrombotic events, presence and severity of bleeding complications were reported during treatment for COVID-19. Bleeding events were classified using ISTH definition. STROBE recommendations were used in order to enhance reporting. RESULTS: A total of 793 patients from 79 centers were included in the study with 593 being hospitalized (74.8%). Among these, 511 were defined as having severe COVID: 162 were admitted to the ICU while 349 received oxygen supplementation outside the ICU. Most patients (90.5%) were receiving thromboprophylaxis. During COVID-19 treatment, 11.1% developed a thromboembolic event, while 5.0% experienced bleeding. Thrombosis developed in 21.6% of patients who were not receiving thromboprophylaxis, in contrast to 10.6% of patients who were on thromboprophylaxis. Bleeding episodes were more frequent in patients receiving intermediate/therapeutic versus prophylactic doses of low-molecular-weight heparin (LWMH) (8.1% vs. 3.8%, respectively) and in elderly. In multivariate analysis, peak D-dimer level and C-reactive protein to albumin ratio were poor prognostic factors for thrombosis occurrence (OR = 1.022, 95%CI 1.007‒1.038 and OR = 1.025, 95%CI 1.001‒1.051, respectively), while thromboprophylaxis use was protective (OR = 0.199, 95%CI 0.061‒0.645). Age and LMWH intermediate/therapeutic dose administration were prognostic factors in multivariate model for bleeding (OR = 1.062, 95%CI 1.017-1.109 and OR = 2.438, 95%CI 1.023-5.813, respectively). CONCLUSIONS: Patients with CLL affected by severe COVID-19 are at a high risk of thrombosis if thromboprophylaxis is not used, but also at increased risk of bleeding under the LMWH intermediate/therapeutic dose administration.


Subject(s)
COVID-19 Drug Treatment , Leukemia, Lymphocytic, Chronic, B-Cell , Thrombosis , Venous Thromboembolism , Aged , Anticoagulants , COVID-19 Testing , Hemorrhage , Heparin, Low-Molecular-Weight , Humans , SARS-CoV-2
7.
JAMA Oncol ; 8(10): 1477-1483, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1990392

ABSTRACT

Importance: It has become common practice to offer immunocompromised patients with hematologic cancers a third COVID-19 vaccination dose, but data substantiating this are scarce. Objective: To assess whether a third mRNA-1273 vaccination is associated with increased neutralizing antibody concentrations in immunocompromised patients with hematologic cancers comparable to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. Design, Setting, and Participants: This prospective observational cohort study was conducted at 4 university hospitals in the Netherlands and included 584 evaluable patients spanning the spectrum of hematologic cancers and 44 randomly selected age-matched adults without malignant or immunodeficient comorbidities. Exposures: One additional mRNA-1273 vaccination 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Main Outcomes and Measures: Serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after a third mRNA-1273 vaccination, and antibody neutralization capacity of wild-type, Delta, and Omicron variants in a subgroup of patients. Results: In this cohort of 584 immunocompromised patients with hematologic cancers (mean [SD] age, 60 [11.2] years; 216 [37.0%] women), a third mRNA-1273 vaccination was associated with median S1-IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1-IgG concentration after the third vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid cancers or multiple myeloma and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1-IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients receiving or shortly after completing anti-CD20 therapy, CD19-directed chimeric antigen receptor T-cell therapy recipients, and patients with chronic lymphocytic leukemia receiving ibrutinib were less responsive or unresponsive to the third vaccination. In the 27 patients who received cell therapy between the second and third vaccination, S1 antibodies were preserved, but a third mRNA-1273 vaccination was not associated with significantly enhanced S1-IgG concentrations except for patients with multiple myeloma receiving autologous HCT. A third vaccination was associated with significantly improved neutralization capacity per antibody. Conclusions and Relevance: Results of this cohort study support that the primary schedule for immunocompromised patients with hematologic cancers should be supplemented with a delayed third vaccination. Patients with B-cell lymphoma and allogeneic HCT recipients need to be revaccinated after treatment or transplantation. Trial Registration: EudraCT Identifier: 2021-001072-41.


Subject(s)
COVID-19 , Hematologic Neoplasms , Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Adult , Female , Middle Aged , Male , Antibody Formation , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , Prospective Studies , Cohort Studies , COVID-19 Vaccines , SARS-CoV-2 , Hematologic Neoplasms/therapy , Immunocompromised Host , Antibodies, Neutralizing , Immunoglobulin G
8.
Blood Adv ; 6(5): 1537-1546, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1666615

ABSTRACT

Vaccination guidelines for patients treated for hematological diseases are typically conservative. Given their high risk for severe COVID-19, it is important to identify those patients that benefit from vaccination. We prospectively quantified serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens during and after 2-dose mRNA-1273 (Spikevax/Moderna) vaccination in hematology patients. Obtaining S1 IgG ≥ 300 binding antibody units (BAUs)/mL was considered adequate as it represents the lower level of S1 IgG concentration obtained in healthy individuals, and it correlates with potent virus neutralization. Selected patients (n = 723) were severely immunocompromised owing to their disease or treatment thereof. Nevertheless, >50% of patients obtained S1 IgG ≥ 300 BAUs/mL after 2-dose mRNA-1273. All patients with sickle cell disease or chronic myeloid leukemia obtained adequate antibody concentrations. Around 70% of patients with chronic graft-versus-host disease (cGVHD), multiple myeloma, or untreated chronic lymphocytic leukemia (CLL) obtained S1 IgG ≥ 300 BAUs/mL. Ruxolitinib or hypomethylating therapy but not high-dose chemotherapy blunted responses in myeloid malignancies. Responses in patients with lymphoma, patients with CLL on ibrutinib, and chimeric antigen receptor T-cell recipients were low. The minimal time interval after autologous hematopoietic cell transplantation (HCT) to reach adequate concentrations was <2 months for multiple myeloma, 8 months for lymphoma, and 4 to 6 months after allogeneic HCT. Serum IgG4, absolute B- and natural killer-cell number, and number of immunosuppressants predicted S1 IgG ≥ 300 BAUs/mL. Hematology patients on chemotherapy, shortly after HCT, or with cGVHD should not be precluded from vaccination. This trial was registered at Netherlands Trial Register as #NL9553.


Subject(s)
COVID-19 , Hematology , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
9.
Blood ; 137(10): 1365-1376, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1127679

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29 856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed "satellites," were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL.


Subject(s)
Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Gene Frequency , Gene Rearrangement , Humans , Somatic Hypermutation, Immunoglobulin
10.
Blood Adv ; 5(3): 913-925, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1072925

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are used to target dysregulated signaling pathways in virtually all hematologic malignancies. Many of the targeted signaling pathways are also essential in nonmalignant immune cells. The current coronavirus severe acute respiratory syndrome coronavirus 2 pandemic catalyzed clinical exploration of TKIs in the treatment of the various stages of COVID-19, which are characterized by distinct immune-related complications. Most of the reported effects of TKIs on immune regulation have been explored in vitro, with different class-specific drugs having nonoverlapping target affinities. Moreover, many of the reported in vivo effects are based on artificial animal models or on observations made in symptomatic patients with a hematologic malignancy who often already suffer from disturbed immune regulation. Based on in vitro and clinical observations, we attempt to decipher the impact of the main TKIs approved or in late-stage development for the treatment of hematological malignancies, including inhibitors of Bruton's tyrosine kinase, spleen tyrosine kinase, BCR-Abl, phosphatidylinositol 3-kinase/ mammalian target of rapamycin, JAK/STAT, and FMS-like tyrosine kinase 3, to provide a rationale for how such inhibitors could modify clinical courses of diseases, such as COVID-19.


Subject(s)
Adaptive Immunity , COVID-19/pathology , Hematologic Neoplasms/drug therapy , Immunity, Innate , Protein Kinase Inhibitors/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Cytokines/metabolism , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Hematologic Neoplasms/complications , Hematologic Neoplasms/pathology , Humans , SARS-CoV-2/isolation & purification
11.
Leukemia ; 34(9): 2354-2363, 2020 09.
Article in English | MEDLINE | ID: covidwho-638239

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a disease of the elderly, characterized by immunodeficiency. Hence, patients with CLL might be considered more susceptible to severe complications from COVID-19. We undertook this retrospective international multicenter study to characterize the course of COVID-19 in patients with CLL and identify potential predictors of outcome. Of 190 patients with CLL and confirmed COVID-19 diagnosed between 28/03/2020 and 22/05/2020, 151 (79%) presented with severe COVID-19 (need of oxygen and/or intensive care admission). Severe COVID-19 was associated with more advanced age (≥65 years) (odds ratio 3.72 [95% CI 1.79-7.71]). Only 60 patients (39.7%) with severe COVID-19 were receiving or had recent (≤12 months) treatment for CLL at the time of COVID-19 versus 30/39 (76.9%) patients with mild disease. Hospitalization rate for severe COVID-19 was lower (p < 0.05) for patients on ibrutinib versus those on other regimens or off treatment. Of 151 patients with severe disease, 55 (36.4%) succumbed versus only 1/38 (2.6%) with mild disease; age and comorbidities did not impact on mortality. In CLL, (1) COVID-19 severity increases with age; (2) antileukemic treatment (particularly BTK inhibitors) appears to exert a protective effect; (3) age and comorbidities did not impact on mortality, alluding to a relevant role of CLL and immunodeficiency.


Subject(s)
Betacoronavirus , Coronavirus Infections/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Pneumonia, Viral/pathology , Adenine/analogs & derivatives , Age Factors , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , COVID-19 , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Middle Aged , Pandemics , Piperidines , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL